TRAFFIC IMPACT ASSESSMENT

FOR

RIVER ROAD REDEVELOPMENT PLAN

Block 135, Lots 9, 10 11, \& 12
Borough of Chatham
Morris County, New Jersey

November 6, 2019

InTRODUCTION

This Traffic Impact Assessment has been prepared as part of a redevelopment plan application for an assemblage of parcels that comprise Block 135, Lots 9-12 for multi-family, residential apartment units. The River Road redevelopment proposal would include both "affordable" and "market" dwelling units with layouts ranging from one to three bedrooms. The community is proposed to consist of 106 one-bedroom units, 145 two-bedroom units, and 8 three-bedroom units totaling 259 units. The building will have lobby and amenity space for residents.

Primary site access is envisioned via a full-movement driveway along River Road that would be located approximately 600 feet south of its intersection with Watchung Avenue. The driveway would lead directly to a parking garage with approximately 500 spaces for tenant and guest/visitor use. Secondary vehicular access has also been considered as desirable for a pick-up/drop-off area near the main building entrance, closer to Watchung Avenue.

As shown, the subject site is presently developed with multiple industrial/light manufacturing uses occupied by National Manufacturing located in the larger building closest to Watchung Avenue, and Burling Instrument, which is located in the smaller building opposite Westy SelfStorage. At the southern end of the site, there is the existing
 Crown Oil, petroleum storage facility with several large, above-ground tanks. All of these existing uses would be razed for the proposed redevelopment.

While any site redevelopment could affect traffic conditions, both the volume and characteristics of new residential traffic in lieu of existing manufacturing/industrial traffic are of important consideration in evaluating the projected traffic impacts on the surrounding area. Dolan \& Dean Consulting Engineers, LLC (D\&D) has been commissioned by the applicant to prepare this Traffic Impact Assessment for the proposed redevelopment for residential apartments, to evaluate the plan for conformance with the Residential Site Improvement Standards (RSIS) and to ensure safe and efficient site ingress and egress.

This traffic study follows the scope and requirements as outlined under Section 4.3.5-Access \& Circulation of the May 6, 2019 River Road Redevelopment Plan prepared by Topology.

As will be detailed further in this study, the resultant impacts associated with the redevelopment plan do not require significant mitigation along the Watchung Avenue corridor due to the low projected traffic impacts (less than 1\%). However, at the intersection of Watchung Avenue and River Road as will be detailed below, the redeveloper will provide specific mitigation to address the net traffic impacts associated with the proposed redevelopment.

This traffic impact study has focused on the projected vehicular traffic impacts as such will constitute the majority of activity associated with the redevelopment site. Given the site's location and recognizing that although three different train stations are located near the site, that "last mile" travel to and from the subject site will invariably consist of motor vehicle related traffic. While individual residents may not use personal automobiles for travel to and from local train stations, the use of ridesharing services and/or potential jitney bus service nevertheless constitute motor vehicle travel.

Recognizing that some residents may walk to and from the site or use bicycles for partial commuting to the train stations, given certain times of the year these options may not be practical or realistic at least within the anticipated redevelopment horizon of the property. Consequently, this traffic study has considered a "worst case" estimate of projected
automobile traffic associated with the redevelopment. To the extent that multi-modal service becomes a greater reality in suburban New Jersey (including Chatham), the projections and conclusions contained in this analysis will be reduced, thus resulting in better than projected operating conditions. While the development of walkable communities are highly desirable, given this particular site's location which is relatively removed from any central business district or urban core, it is anticipated that the site's walkability will be limited to weekend or evening recreational activity and not as a primary commuting means, which is the focus of this particular traffic study.

Appended to this report is a summary of commuting characteristics for Chatham Borough based on the most recent data from the US Census Bureau. As noted, approximately $2 / 3$ Borough residents use a motor vehicle as a means of transportation to work. Public transportation (excluding taxi cabs) represents 25.3% of the travel means; walking and bicycling to work account for minimal travel use particularly in the context of the River Road Redevelopment. 7.3\% of Borough residents work at home.

For the anticipated future public transportation use, obviously the distances to the New Jersey Transit rail and bus lines would affect the River Road redevelopment. For example, the approximate walking distance from the subject site to the Chatham Transit Station is approximately 4,900 linear feet traveling west along Watchung Avenue and north on Fairmount Avenue to reach the train station.

However, while sidewalks are intermittently provided along Watchung Avenue, there is not a single continuous walkway on either side of the road from the subject site to Fairmount Avenue. For example, in front of Bottle King there is no sidewalk nor is there any sidewalk in front of the building occupied by Pascarella Brothers. There is also no sidewalk on the south side of Watchung Avenue west of the Railroad overpass. Moreover, the walking distance of just under a mile under favorable weather conditions, would take approximately 20 minutes. By contrast, either as a shared automobile trip with another building resident or via ride-service, the travel time from the site to the train station is less than 3 minutes via motor vehicle.

Travel to the Summit train station is approximately 1.7 miles and the New Providence train station is approximately 1.5 miles away. Again, while walking to the various train stations is possible, for a conservative traffic impact analysis, it is assumed that the 25% of future site residents who may use mass transit would use a motor vehicle as part of a multi-modal trip.

Existing Conditions

As noted, the redevelopment site is an assemblage of four lots and is located at the southwestern corner of River Road and Watchung Avenue. The overall redevelopment site has approximately 650 feet of frontage on River Road and almost 275 feet of frontage on Watchung Avenue. The western edge of the site is bordered by the New Jersey Transit Morris \& Essex commuter rail line. North of the site, River Road intersects Watchung Avenue at a three-leg, traffic signal-controlled intersection. The driveway to Dreyer's Lumber yard is offset from River Road. As noted, the subject site is developed with multiple industrial buildings that are believed to total approximately 64,710 square feet, excluding the oil storage tanks.

Watchung Avenue (Morris County Route 646) has a general northwest/southeast orientation and is under County jurisdiction. For general orientation, the road is considered to run east/west. The roadway provides one lane in each travel direction with a posted speed limit of 35 miles per hour near the site. A dedicated left turn lane to travel south on River Road is provided at the intersection.

River Road is a local roadway with a general northeast/southwest orientation that will be considered to run north/south for this report. The roadway provides one lane of travel in each direction, with posted speed limit of 30 miles per hour. A variety of land uses exist along River Road, including warehouses, a self-storage facility, restaurants, and a bus depot. To improve intersection efficiency, the Borough has re-striped River Road under an interim scheme for two northbound approach lanes at the Watchung Avenue intersection.

Morris Avenue is designated as Union County Route 651 and has a general northwest/southeast orientation. Morris Avenue has a posted speed limit of 35 miles per hour with one lane is provided per travel direction. The road's northern terminus intersects Watchung Avenue at a signalized T-Type intersection where right-hand turning movements are processed via channelized Yield-controlled lanes.

Passaic Avenue is designated as Morris County Route 649 and has a general north/south orientation. Morris County Route 649 spans an approximate total of 1.2 miles and exists between River Road to the north and Springfield Avenue to the south. The roadway provides one lane per travel direction within the general site vicinity and operates with a posted speed limit of 40 Miles Per hour. Passaic Avenue intersects River Road at a T-type intersection which has recently been outfitted with a traffic signal.

Fairmont Avenue is designated as Morris County Route 638 and has a general north/south orientation. To the north, the roadway begins at Main Street in Chatham, then continues past the Chatham Train Station and continues south for approximately 3.8 miles, where it becomes Central Avenue upon entering Union County. The roadway provides one travel lane in each direction with a posted speed limit of 30 MPH . Fairmount Avenue intersects Watchung Avenue at a signalized 4-leg intersection. Continuous sidewalks are provided on both sides of Fairmount Avenue from Watchung Avenue to Main Street.

Hillside Avenue is a local street within Chatham with a general north/south orientation. The road provides one travel lane in each direction, with a posted speed limit of 25 MPH consistent with the residential nature of the roadway. Hillside Avenue intersects Watchung Avenue at a signalized, 4-leg intersection.

Girard Avenue, Bridge Street, \& Edgehill Avenue are local roadways generally serve residential land uses. Each roadway provides one lane per travel direction with a non-posted, statutory speed limit of 25 MPH . These roadways intersect Watchung Avenue at STOPcontrolled, T-Type intersections.

EXISTING TRAFFIC CONDITIONS

To establish existing traffic conditions near the site, manual traffic counts were conducted on Wednesday, March 27, 2019 from 7:00 a.m. to 9:00 a.m. and from 4:00 p.m. to 6:30 p.m. at the following intersections, consistent with the Redevelopment Plan:

- River Road \& Watchung Avenue
- Watchung Avenue \& Bridge Street
- Watchung Avenue \& Commerce Street
- Watchung Avenue \& Girard Avenue
- Watchung Avenue \& Hillside Avenue
- Watchung Avenue \& Edgehill Road
- Watchung Avenue \& Fairmount Avenue
- Passaic Avenue \& River Road (in the City of Summit)
- Morris Avenue \& River Road (in the City of Summit)

Appended Figures 2 and 3 shows the 2019 peak hour traffic volumes; the traffic count data is also appended to this report.

ANALYSIS OF EXISTING TRAFFIC VOLUMES

A volume/capacity, Level of Service analysis was conducted for the existing traffic volumes at the subject intersections using the Highway Capacity Manual (HCM) computer software. This type of analysis is performed to assess intersection operations and to identify any areas of excessive delay. While traffic volumes provide a measure of activity on the area roadway system, it is also important to evaluate how well that system can accommodate those volumes - i.e., a comparison of peak hour traffic volumes with available roadway capacity.

By definition, capacity represents the maximum vehicular volume that can be accommodated on a given road segment or intersection lane as a function of roadway geometry, the general environs, traffic characteristics, regulations and controls. Intersections are usually the critical point in any road network since it is at such points that conflicts exist between through, crossing, and turning traffic. It is at these locations where congestion is most likely to occur.

Based on this analysis, and as shown in Figure 4, all movements at the study intersections currently operate at Levels of Service " D " or better during both peak hours. A description of intersection Levels of Service is noted below:

Levels of Service and	Expected Delay for Signalized Intersections
Level of Service	Delay per Vehicle (seconds)
A	<10.0
B	>10.0 and <20.0
C	>20.0 and <35.0
D	>35.0 and <55.0
E	>55.0 and <80.0
F	>80.0
Levels of Service and Expected Delay for Unsignalized Intersections	
Level of Service	Delay per Vehicle (seconds)
A	$<0-10$
B	>10 to <15
C	>15 to <25
D	>25 to <35
E	>35 to <50
F	>50

Observations made during the traffic counts confirm that traffic flows generally well with only average delays noted throughout the peak hours. Queuing was observed along eastbound Watchung Avenue in the morning leading up to its intersection with River Road, during both the morning and evening peak hour, however, would clear during subsequent "green" phase of the traffic signal. Local schools were in session during the time of the traffic counts and conditions are believed to representative of typical operations.

Current operations at the River Road and Watchung Avenue intersection can best be characterized as somewhat inefficient due to older traffic signal equipment that has either not been maintained or is not operating properly, which leads to unnecessarily longer delays on Watchung Avenue. For example, the vehicle detection equipment on River Road extends the signal "green" phase even though there are no vehicles present. This poor operation in turn, delays traffic on Watchung Avenue that could otherwise flow through the intersection, if not for the antiquated and malfunctioning equipment.

[^0]
TRAFICIC CHARACTERISTICS OF THE PROPOSED DEVELOPMENT

The Redevelopment Plan proposes to first raze all of the existing manufacturing/light industrial uses to allow for the construction of new building with 259 residential units and off-street parking to be provided in compliance with RSIS requirements. As the site is presently developed and generates peak hour traffic, the net traffic impacts associated with the change in use will be fairly minimal, though the patterns between ingress and egress traffic will be reversed with a residential use.

Most importantly, virtually all heavy truck use would be eliminated with a residential use on the site. From the observations made during the recent traffic counts, trucks currently back into the loading docks at the northern end of the National Manufacturing building directly at the Watchung Avenue intersection. This activity creates considerable traffic disruption (along with significant safety concerns) as large, tractor trailers must back up on River Road, in direct conflict with intersection traffic. While occurring presumably for decades, the practice is undesirable and potentially both unsafe and illegal.

TRIP GENERATION

The potential traffic generation from any use is directly related to the type, size, and characteristic of the use itself. Lacking specific site operational data, trip generation projections are customarily made using data from studies of similar uses as compiled by the Institute of Transportation Engineers (ITE) in Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017.

For this particular study, traffic projections for the proposed housing were prepared using the industry standard ITE trip generation rates for "Multi-Family Housing (Low Rise)". These projections were then compared with the traffic generated by the existing light industrial/manufacturing uses to the determine the net new traffic impacts. The table on the following pages summarizes the projected traffic generation for the morning and evening peak hours. The ITE trip generation worksheets are appended to this report.

As a note, the conceptual plans prepared for the redevelopment plan depict a multi-story residential building. Under both the RSIS as well as ITE definitions, the building can be considered "mid-rise" (defined as having between 3 and 10 levels (floors))for traffic generation purposes. However, to provide a conservative traffic analysis, low-rise trip generation rates were used.

As summarized on Table I if mid-rise traffic rates were used in the analysis, the overall projections would be approximately 21% lower than assumed in this study. Presumably the higher density of mid-rise apartments allows for more ridesharing, shuttles, mass transit use, as such buildings are typically located closer to town/city centers with greater transit options. Again, rather than assume certain transit credits and the appropriateness of such, this study uses the higher traffic projections for low-rise units.

Table I
Projected Trip Generation
River Road Redevelopment Site - 259 Multi-Family units

Time Period	Low-Rise Total Trips	Mid-Rise Total Trips
Morning Peak Hour	119	93
Evening Peak Hour	145	114

As noted, the site is presently developed with approximately 64,710 total square-feet of light industrial/manufacturing facilities, each generating traffic onto the adjacent roadway system. Traffic from the redevelopment proposal would therefore replace traffic from the existing facility, thus would not be an entirely new traffic impact on the area roadway system. To better isolate the net additional traffic impacts associated with the development, existing trip "credits" must first be taken as such traffic will be eliminated with the redevelopment proposal.

Existing traffic was estimated by also using ITE projections, specifically for Land Use Code 110 "General Light Industrial" rates and subsequently removed from existing traffic. Table II shows the net new site trips after eliminating the existing site uses. Once this traffic was removed from the network, traffic from the redevelopment site was then added.

Table II
Projected Net New Trips

Land Use	Morning Peak Hour	Evening Peak Hour
Multi-Family Housing (Low-Rise)	119	145
General Light Industrial	-45	-41
Net New Trips	74	104

As noted, for a conservative traffic impact analysis, no additional traffic credits were taken for possible mass-transit usage, telecommuting options, or other non-automobile travel options (walking/bicycle) that would be available to future residents. Consequently, the actual site traffic generated by the redevelopment proposal will be less than estimated in this report.

The next step in the analysis is to determine the general directional distribution of future site-generated traffic, for example to determine the primary exiting traffic patterns in the morning and arrival patterns in the evening. Again, using the ITE data, directional distribution percentages for Multi-Family Housing (Low-Rise) were then applied to the new trips to develop projected entering and exiting volumes at the site driveway. For the morning peak hour, the overall site traffic would consist of 27 entering and 92 exiting vehicles, and during the evening peak hour, site traffic is projected to consist of 91 entering and 54 exiting vehicles.

DISTRIBUTION OF SITE GENERATED TRAFFIC

The directional distribution of new site-generated traffic was established based on a review of the existing traffic volumes and patterns as observed along the roadway network, which generally reflect home-to-work (and the reverse) commuting patterns. The projected site traffic is shown on appended Figure 5. Most site traffic is expected to arrive/depart via Watchung Avenue reflecting access to and the regional highway system to the east and the Chatham train station and Route 287 to the west.

FUTURE TRAFFIC CONDITIONS

FUTURE TRAFFIC VOLUMES

It is recognized that traffic routinely fluctuates along various state and county roadways, as well as local streets, and varies not only day-to-day, but also on a monthly and yearly basis. Normal "background" traffic increases regularly occur as attributed to continued regional growth and changes in driver demographics. There may also be additional traffic generated by specific projects that will lead to increased demands on the roadways in the site vicinity (at least to some degree), even if no changes were to occur on the subject property.

Regional traffic growth patterns as compiled by the New Jersey Department of Transportation (NJDOT) were examined for this analysis. Based on NJDOT Regional Planning data for Morris County, peak hour traffic volumes are conservatively projected to annually increase by 1.0%. This DOT traffic growth rate would account for any new traffic associated with on-going, area development.

Future base "no-build" volumes were developed by applying the assumed DOT background growth to the existing volumes over a two-year period. These base "no-build" volumes were then reduced to account for traffic generated by the existing "light industrial" use. This was done by utilizing ITE data and the observed traffic patterns to forecast an existing "light industrial" trip distribution. This distribution was then subtracted out of the base "no-build" volumes to develop future adjusted "no-build" volumes which are shown on Figures 6 \& 7 . "Build" traffic volumes were developed (shown in Figure $8 \& 9$) by adding site traffic to the adjusted "no-build" volumes for a total future composite.

FUTURE "BUILD" TRAFFIC ANALYSIS

An analysis of future intersection operations was completed including the "new" traffic added by the redevelopment for residential apartments. Revised Levels of Service analyses were conducted to compare the "no build" and "build" traffic volumes at the study intersections and the results are shown in Figures 10 and 11, respectively. This type of

River Road Redevelopment Play
Borough of Chatham, Morris County
November 6, 2019

comparative analysis is used to determine the net traffic impacts of the proposed redevelopment.

As noted, the additional site traffic (shown under the "build" conditions) will not negatively affect the intersection operations. All movements will continue to operate at Levels of Service "D" or better during both peak hours, illustrating the minimal traffic impacts of the proposed residential development. Adequate capacity exists to accommodate the additional site-generated traffic without the need for roadway, intersection or other mitigation that arises as directly attributable to the net increase in traffic.

As requested by Topology, appended Figures A \& B show the net percent traffic impact associated with the Redevelopment at each studied intersection for each peak hour. As noted, future site traffic will contribute result less than 1% of the total intersection traffic except at the River Road intersection where site traffic will be most heavily concentrated. Even at this location, the site traffic will at most represent 5.2% of the total intersection with nearly 95% of the traffic comprised of existing traffic plus future background growth.

For the traffic mitigation required in the Redevelopment Plan, overall intersection operations at Watchung Avenue and River Road could be improved through a minor re-timing of the traffic signal and improved maintenance or replacement of exiting, deficient traffic signal equipment that is designed to better accommodate actual traffic demands though improved efficiency that would optimize the traffic operations. It is further assumed that the redevelopment would permit an opportunity for a minor cartway widening of at least 3 feet on River Road along the site frontage to improve the lane widths and increasing stacking at the traffic-signal approach. This improvement would allow for better right-turn-on-red opportunities and the implementation of an overlap signal phase to continue east on Watchung Avenue.

Appended Figure 11 also shows the improved operations with the signal re-timing, which benefits all motorists traveling through the intersection.

Site Access and Circulation

The following items address access and on-site design characteristics based on a concept plan for the redevelopment:
> Site access is envisioned via a new, full-movement roadway along River Road to be located as far south as practical, thus avoiding interference with vehicular operations closer to the signalized intersection. The driveway operational analyses indicate that the proposed access design will adequately accommodate peak hour traffic associated with traffic volume projections and confirm that any on-site queuing will be minimal. Projected delays exiting the site into River Road will be minimal with high service levels projected, providing further evidence of the minimal traffic impact associated with the proposed redevelopment.
> For residential developments, the required parking supply is predicated on ratios contained in the Residential Site Improvement Standards (RSIS, NJAC 5:21). The following table summarizes the required parking:

Table III
Parking Requirements

Use	Unit Count	Parking Ratio	Required Parking Spaces
One-Bedroom Apartments	106	1.8 spaces/unit	191
Two-Bedroom Apartments	145	2 spaces/unit	290
Three-Bedroom Apartments	8	2.1 spaces/unit	17
Total Parking Required		498 spaces	

As shown, RSIS requires a total of 498 on-site parking spaces, which includes the required 0.5 space/unit for visitor and guest use. The concept plan can comply with the required parking standard.

CONCLUSIONS

In summary, it is evident from this analysis of projected future traffic conditions that the proposed redevelopment for new 259 -unit residential apartments would generate only modest net traffic increases. This traffic study concludes that the overall traffic increases will not create a negative impact on the local roadway network and there will be no significant change in intersection operations at Watchung Avenue and River Road, with the implementation of intersection improvements that are appropriate to improve existing, deficient operating conditions.

Even with the potential traffic increases associated with the application, adequate roadway capacity will continue to exist to accommodate future site traffic. All movements to and from the site will operate safely and efficiently, assuming reasonable and prudent driver behavior.

Based on these findings, it is concluded that the site is particularly well suited for the proposed redevelopment, particularly in light of the current industrial/manufacturing use and its associated traffic and safety impacts with the current truck access along River Road.

The proposed redevelopment and resultant traffic impacts will not negatively impact the traffic in the surrounding area or along the adjacent streets as adequate roadway capacity exists to accommodate the increases. The traffic characteristics of the uses will be consistently minimal and will not result in any additional off tract congestion or unfavorable conditions.

As a mitigation of these minor traffic impacts, the redevelopment proposal allows for minor intersection enhancements and frontage improvements affording an opportunity to actually make intersection operations better, even with the additional redevelopment site traffic.

Technical Appendix

River Road Redevelopment
FIGURE I
Borough of Chatham
Morris County, New Jersey

River Road Redevelopment
FIGURE 2
BOROUGH OF CHATHAM
Morris County, New Jersey
DOLANsDEAN
CONSULTING ENGINEERS, LLC

FIGURE 3

River Road Redevelopment
FIGURE 4
BOROUGH OF CHATHAM
Morris County, New Jersey

River Road Redevelopment
FIGURE 5
Morris County, New Jersey
DOLAN DEEAN
CONSUTNGENGNETSSLIC

River Road Redevelopment
FIGURE 6
BOROUGH OF CHATHAM
Morris County, New Jersey
DOLANsDEAN
CONSULTING ENGINEERS, LLC

River Road Redevelopment
FIGURE 7
Borough of chatham
Morris County, New Jersey

River Road Redevelopment
FIGURE 8
Morris County, New Jersey

River Road Redevelopment
FIGURE 9 Borough of chatham
Morris County, New Jersey

River Road Redevelopment
FIGURE 10 BOROUGH OF CHATHAM
Morris County, New Jersey
DOLAN_DEAN
CONSULTING ENGINEERS,LLC

River Road Redevelopment
FIGURE II
Morris County, New Jersey

BUILD LEVELS OF SERVICE MORNING (EVENING) PEAK HOUR

River Road Redevelopment
FIGURE A BOROUGH OF CHATHAM
Morris County, New Jersey
DOLAN ${ }^{2} D E A N$
CONSULTING ENGINEERS,LLC

River Road Redevelopment
FIGURE B BOROUGH OF CHATHAM
Morris County, New Jersey
DOLAN_DEAN

Multifamily Housing (Low-Rise)

(220)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 42
Avg. Num. of Dwelling Units: 199
Directional Distribution: 23\% entering, 77% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.46	$0.18-0.74$	0.12

Data Plot and Equation

Multifamily Housing (Low-Rise)

(220)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 50
Avg. Num. of Dwelling Units: 187
Directional Distribution: 63\% entering, 37\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.56	$0.18-1.25$	0.16

Data Plot and Equation

Multifamily Housing (Mid-Rise)
 (221)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 60
Avg. Num. of Dwelling Units: 208
Directional Distribution: 61\% entering, 39\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.44	$0.15-1.11$	0.19

Data Plot and Equation

Multifamily Housing (Mid-Rise)
 (221)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 53
Avg. Num. of Dwelling Units: 207
Directional Distribution: 26\% entering, 74% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	$0.06-1.61$	0.19

Data Plot and Equation

U.S. Census Bureau

FactFinder

Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.

Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

Subject	Chatham borough, New Jersey					
	Total		Male		Female	
	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error
Workers 16 years and over	4,267	+/-294	2,346	+/-208	1,921	+/-172
MEANS OF TRANSPORTATION TO WORK						
Car, truck, or van	64.7\%	+/-4.4	59.3\%	+/-5.5	71.2\%	+/-5.9
Drove alone	59.6\%	+/-4.5	55.6\%	+/-5.8	64.5\%	+/-7.0
Carpooled	5.1\%	+/-2.1	3.7\%	+/-2.6	6.7\%	+/-3.9
In 2-person carpool	2.1\%	+/-1.3	1.1\%	+/-1.3	3.3\%	+/-2.1
In 3-person carpool	2.5\%	+/-1.6	2.5\%	+/-1.9	2.6\%	+/-2.9
In 4-or-more person carpool	0.4\%	+/-0.6	0.1\%	+/-0.3	0.8\%	+/-1.3
Workers per car, truck, or van	1.05	+/-0.02	1.04	+/-0.03	1.06	+/-0.04
Public transportation (excluding taxicab)	25.3\%	+/-3.6	30.7\%	+/-4.8	18.7\%	+/-4.7
Walked	2.3\%	+/-1.3	2.7\%	+/-1.9	1.9\%	+/-2.1
Bicycle	0.2\%	+/-0.2	0.3\%	+/-0.4	0.0\%	+/-1.7
Taxicab, motorcycle, or other means	0.3\%	+/-0.4	0.5\%	+/-0.7	0.0\%	+/-1.7
Worked at home	7.3\%	+/-2.3	6.5\%	+/-3.1	8.2\%	+/-3.1
PLACE OF WORK						
Worked in state of residence	70.8\%	+/-5.0	64.1\%	+/-6.0	79.0\%	+/-5.7
Worked in county of residence	36.7\%	+/-3.9	29.8\%	+/-4.9	45.1\%	+/-5.9
Worked outside county of residence	34.1\%	+/-5.6	34.3\%	+/-7.6	33.9\%	+/-5.9

Subject	Chatham borough, New Jersey					
	Total		Male		Female	
	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error
Worked outside state of residence	29.2\%	+/-5.0	35.9\%	+/-6.0	21.0\%	+/-5.7
Living in a place	100.0\%	+/-0.8	100.0\%	+/-1.4	100.0\%	+/-1.7
Worked in place of residence	15.6\%	+/-3.2	13.6\%	+/-3.9	18.1\%	+/-5.3
Worked outside place of residence	84.4\%	+/-3.2	86.4\%	+/-3.9	81.9\%	+/-5.3
Not living in a place	0.0\%	+/-0.8	0.0\%	+/-1.4	0.0\%	+/-1.7
Living in 12 selected states	100.0\%	+/-0.8	100.0\%	+/-1.4	100.0\%	+/-1.7
Worked in minor civil division of residence	15.6\%	+/-3.2	13.6\%	+/-3.9	18.1\%	+/-5.3
Worked outside minor civil division of residence	84.4\%	+/-3.2	86.4\%	+/-3.9	81.9\%	+/-5.3
Not living in 12 selected states	0.0\%	+/-0.8	0.0\%	+/-1.4	0.0\%	+/-1.7
Workers 16 years and over who did not work at home	3,957	+/-289	2,193	+/-215	1,764	+/-167
TIME LEAVING HOME TO GO TO WORK						
12:00 a.m. to 4:59 a.m.	2.1\%	+/-1.5	3.7\%	+/-2.6	0.0\%	+/-1.8
5:00 a.m. to 5:29 a.m.	1.3\%	+/-1.1	0.8\%	+/-0.9	1.9\%	+/-2.1
5:30 a.m. to 5:59 a.m.	1.0\%	+/-0.8	1.1\%	+/-1.1	0.9\%	+/-1.3
6:00 a.m. to 6:29 a.m.	6.8\%	+/-2.4	10.2\%	+/-3.9	2.6\%	+/-1.7
6:30 a.m. to 6:59 a.m.	8.9\%	+/-2.6	11.7\%	+/-3.7	5.5\%	+/-2.9
7:00 a.m. to 7:29 a.m.	20.9\%	+/-3.7	25.7\%	+/-5.7	15.0\%	+/-4.8
7:30 a.m. to 7:59 a.m.	18.7\%	+/-3.5	19.8\%	+/-4.4	17.3\%	+/-5.2
8:00 a.m. to 8:29 a.m.	14.2\%	+/-2.6	8.7\%	+/-2.9	21.1\%	+/-5.3
8:30 a.m. to 8:59 a.m.	6.3\%	+/-2.0	3.2\%	+/-1.8	10.0\%	+/-3.7
9:00 a.m. to 11:59 p.m.	19.8\%	+/-3.8	15.0\%	+/-4.1	25.7\%	+/-5.9
TRAVEL TIME TO WORK						
Less than 10 minutes	9.8\%	+/-2.9	8.0\%	+/-3.0	12.0\%	+/-4.4
10 to 14 minutes	9.7\%	+/-3.0	6.8\%	+/-3.3	13.2\%	+/-4.2
15 to 19 minutes	13.2\%	+/-2.9	11.7\%	+/-3.7	15.1\%	+/-4.7
20 to 24 minutes	14.7\%	+/-5.2	13.5\%	+/-5.6	16.2\%	+/-6.0
25 to 29 minutes	3.9\%	+/-1.3	2.9\%	+/-1.6	5.3\%	+/-2.3
30 to 34 minutes	8.2\%	+/-2.5	7.8\%	+/-2.8	8.8\%	+/-3.9
35 to 44 minutes	2.1\%	+/-1.1	2.7\%	+/-1.6	1.4\%	+/-1.4
45 to 59 minutes	7.4\%	+/-3.1	8.1\%	+/-3.2	6.6\%	+/-4.2
60 or more minutes	31.0\%	+/-4.4	38.6\%	+/-5.9	21.6\%	+/-5.5
Mean travel time to work (minutes)	39.3	+/-3.3	45.0	+/-4.3	32.2	+/-3.8
VEHICLES AVAILABLE						
Workers 16 years and over in households	4,246	+/-293	2,329	+/-207	1,917	+/-173
No vehicle available	1.8\%	+/-1.8	1.8\%	+/-1.9	1.8\%	+/-2.0
1 vehicle available	13.9\%	+/-3.8	11.2\%	+/-3.5	17.2\%	+/-5.2
2 vehicles available	53.5\%	+/-6.9	54.1\%	+/-7.4	52.8\%	+/-7.4
3 or more vehicles available	30.8\%	+/-7.4	32.9\%	+/-7.6	28.2\%	+/-8.1

Subject	Chatham borough, New Jersey					
	Total		Male		Female	
	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error
PERCENT ALLOCATED						
Means of transportation to work	5.3\%	(X)	(X)	(X)	(X)	(X)
Private vehicle occupancy	6.8\%	(X)	(X)	(X)	(X)	(X)
Place of work	10.2\%	(X)	(X)	(X)	(X)	(X)
Time leaving home to go to work	12.0\%	(X)	(X)	(X)	(X)	(X)
Travel time to work	7.5\%	(X)	(X)	(X)	(X)	(X)
Vehicles available	0.0\%	(X)	(X)	(X)	(X)	(X)

Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables

The 12 selected states are Connecticut, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Wisconsin.

Workers include members of the Armed Forces and civilians who were at work last week.

When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject.

While the 2013-2017 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities.
 ACS do not necessarily reflect the results of ongoing urbanization.

Source: U.S. Census Bureau, 2013-2017 American Community Survey 5-Year Estimates

Explanation of Symbols:

 tatistical test is not appropriate.
 because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
3. An '-' following a median estimate means the median falls in the lowest interval of an open-ended distribution
4. An '+' following a median estimate means the median falls in the upper interval of an open-ended distribution
5. An ${ }^{\prime * * * ' ~ e n t r y ~ i n ~ t h e ~ m a r g i n ~ o f ~ e r r o r ~ c o l u m n ~ i n d i c a t e s ~ t h a t ~ t h e ~ m e d i a n ~ f a l l s ~ i n ~ t h e ~ l o w e s t ~ i n t e r v a l ~ o r ~ u p p e r ~ i n t e r v a l ~ o f ~ a n ~ o p e n-e n d e d ~ d i s t r i b u t i o n . ~ A ~ s t a t i s t i c a l ~ t e s t ~ i s ~ n o t ~ a p p r o p r i a t e . ~}$
6. An ${ }^{\prime * * * * * ' ~ e n t r y ~ i n ~ t h e ~ m a r g i n ~ o f ~ e r r o r ~ c o l u m n ~ i n d i c a t e s ~ t h a t ~ t h e ~ e s t i m a t e ~ i s ~ c o n t r o l l e d . ~ A ~ s t a t i s t i c a l ~ t e s t ~ f o r ~ s a m p l i n g ~ v a r i a b i l i t y ~ i s ~ n o t ~ a p p r o p r i a t e . ~}$
7. An ' N ' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.
8. An '(X)' means that the estimate is not applicable or not available.

TRAFFIC SIGNAL TIMING

WATCHUNG AVENUE AND FAIRMOUNT AVENUE

CHATHAM BOROUGH

90 SEC BACKGROUND CYCLE

VEHICLE ACTUATION

	SIGNALS				
PHASE	$1-4$	$5-8$	$9-12$	$13-16$	
A-WATCHUNG	G	R	W	LW	$60-37$
PED CLEARANCE	G	R	FDW	DU	11
CHANGE	Y	R	DU	DU	4
CLEARANCE	R	R	DU	DU	2
B -FAIRMOUNT AVE					
CHANGE	R	G	DU	NW	$7-30$
CLEARANCE	R	Y	NW	NW	4
	R	R	PW	LW	2
FLASHING OPERATION					
		Y	R	DARK	DARK

NOTES:

1. CONTROLLER TO REST IN PHASE A GREEN. MEMORY AND RECALL OFF FOR PHASE B.
2. VEHICLE EXTENSION - 2 SEC.
3. AN OFFSET OF 27 SECONDS TO BE MEASURED FROM THE BEGINNING OF WATCHUNG AVENUE YELLOW AT THE INTERSECTION OF WATCHUNG AVE/ LAFAYETTE AVE TO THE BEGINNING OF YELLOW AT WATCHUNG AVE / FAIRMOUNT AVE.

6/27/00

> Offset not
> implemented as of
> $6 / 28100$

TRAFFIC SIGNAL TIMING

WATCHUNG AVENUE AND HILLSIDE AVENUE

CHATHAM BOROUGH

90 SEC BACKGROUND CYCLE

PHASE
A - WATCHUNG CHANGE CLEARANCE

B - HILLSIDE AVE
CHANGE
CLEARANCE

SIGNALS
TIME

1-4
G
Y
R
5-8
R
R
R

R
R
R

Y
R

NOTES:

1. CONTROLLER TO REST IN PHASE A GREEN. MEMORY AND RECALL OFF FOR PHASE B.
2. VEHICLE EXTENSION - 2 SEC.
3. AN OFFSET OF 77 SECONDS TO BE MEASURED FROM THE BEGINNING OF WATCHUNG AVENUE YELLOW AT THE INTERSECTION OF WATCHUNG AVE / LAFAYETTE AVE TO THE BEGINNING OF YELLOW AT WATCHUNG AVE / HILLSIDE AVE.

6/27/00

$$
\begin{aligned}
& \text { Offset not } \\
& \text { implemented as of } \\
& 6 / 28100
\end{aligned}
$$

Directive \# \qquad
Watchung Avenue and River Road Borough of Chatham, Morris County

040133602
Dated: 5/23/97
Revised: September 29, 2004

63-90 SECOND VARIBLE CYCLE

Phase		1	2,5	3,4	$\begin{gathered} 6,7,8 \\ 9,10 \end{gathered}$	$\begin{aligned} & \text { TIME I } \\ & \text { (SEC) } \end{aligned}$	$\begin{aligned} & \text { TIME II } \\ & \text { (SEC) } \end{aligned}$	TIME III (SEC)
A	Watchung Avenue WB Lead Change	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & <\mathrm{G}-/ \mathrm{G} \\ & <\mathrm{Y} / \mathrm{G} \end{aligned}$	$\begin{aligned} & \hline R \\ & R \end{aligned}$	$\begin{aligned} & \hline R \\ & R \end{aligned}$	$\begin{gathered} 5-8 \\ 3 \end{gathered}$	$\begin{gathered} 5-13 \\ 3 \end{gathered}$	$\begin{gathered} 5-8 \\ 3 \end{gathered}$
B.	Watchung Avenue R.O.W Change Clearance	$\begin{aligned} & \hline \mathrm{G} \\ & \mathrm{Y} \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { G } \\ & Y \\ & R \end{aligned}$	$\begin{aligned} & \hline \mathrm{G} \\ & \mathrm{Y} \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{gathered} 42 \\ 4 \\ 2 \end{gathered}$	$\begin{gathered} 37 \\ 4 \\ 2 \end{gathered}$	$\begin{gathered} 48 \\ 4 \\ 2 \\ \hline \end{gathered}$
C.	River Road R.O.W Change Clearance	$\begin{aligned} & \hline R \\ & R \\ & R \end{aligned}$	$\begin{aligned} & \hline R \\ & R \\ & R \end{aligned}$	$\begin{aligned} & \hline R \\ & R \\ & R \\ & R \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{Y} \\ & \mathrm{R} \end{aligned}$	$\begin{gathered} 7-26 \\ 3 \\ 2 \end{gathered}$	$\begin{gathered} \hline 7-26 \\ 3 \\ 2 \end{gathered}$	$\begin{gathered} 7-20 \\ 3 \\ 2 \\ \hline \end{gathered}$
EMERGENCY FLASH		Y	Y	Y	R			

NOTES:

1. Phase B Recall to be on. Phase A \& C Memory and Recall to be off.
2. The vehicle extension interval is to be set at 3 seconds.
3. Pedestrian Actuation must guarantee a 14 second interval to Phase C.
4. Time I operates from 6:00 am to $9: 00 \mathrm{am}$ and Time II operates $4: 00 \mathrm{pm}$ to $6: 00 \mathrm{pm}$ Monday through Friday. Time III operates at all other times.

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Am Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Bridge St \& 646
Jurisdiction	
East/West Street	CR 646
North/South Street	Bridge Street
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		2	575				547	13						5		2
Percent Heavy Vehicles (\%)		4												4		4
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.14												6.44		6.24
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.24												3.54		3.34

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 16 / 2019$
Analysis Year	2019
Time Analyzed	Am Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Commerce St \& Rt 646
Jurisdiction	
East/West Street	Route 646
North/South Street	Commerce Street
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		15	563				534	40						21		22
Percent Heavy Vehicles (\%)		4												4		4
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.14												6.44		6.24
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.24												3.54		3.34

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	16												46	
Capacity, c (veh/h)	953												277	
v/c Ratio	0.02												0.17	
95\% Queue Length, Q_{95} (veh)	0.1												0.6	
Control Delay (s/veh)	8.8												20.6	
Level of Service (LOS)	A												C	
Approach Delay (s/veh)		0.4											20.6	
Approach LOS													C	

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$4 / 5 / 2019$
Analysis Year	2019
Time Analyzed	Am Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Edgehill Rd \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Edgehill Rd
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			638	17		5	603			45		7				
Percent Heavy Vehicles (\%)						3				3		3				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				

Delay, Queue Length, and Level of Service

Copyright © 2019 University of Florida, All Rights Reserved.

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Am Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Girad Ave \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Girad Avenue
Peak Hour Factor	0.91
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			573	7		4	544			12		20				
Percent Heavy Vehicles (\%)						4				4		4				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.14				6.44		6.24				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.24				3.54		3.34				

Delay, Queue Length, and Level of Service

General Information

Agency
An

Demand Information
Approach Movement
Demand (v), veh/h

Signal Information

Cycle, s	90.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	No	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results

Assigned Phase

Case Number
Phase Duration, s
Change Period, ($Y+R$ c), s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time (g e), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement
Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/ln (50 th percentile)
Back of Queue (Q), veh/ln (50 th percentile)
Queue Storage Ratio ($R Q$) (50 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS
Intersection Delay, s/veh/LOS

Multimodal Results	EB		WB	
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Pm Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Bridge St \& 646
Jurisdiction	
East/West Street	CR 646
North/South Street	Bridge Street
Peak Hour Factor	0.98
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		6	583				584	14						1		1
Percent Heavy Vehicles (\%)		1												1		1
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.11												6.41		6.21
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.21												3.51		3.31

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	6												2	
Capacity, c (veh/h)	973												287	
v/c Ratio	0.01												0.01	
95\% Queue Length, Q_{95} (veh)	0.0												0.0	
Control Delay (s/veh)	8.7												17.7	
Level of Service (LOS)	A												C	
Approach Delay (s/veh)		0.2											7.7	
Approach LOS													C	

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 16 / 2019$
Analysis Year	2019
Time Analyzed	Pm Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Commerce St \& Rt 646
Jurisdiction	
East/West Street	Route 646
North/South Street	Commerce Street
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		11	622				589	12						36		30
Percent Heavy Vehicles (\%)		1												1		1
Proportion Time Blocked																
Percent Grade (\%)													0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.11												6.41		6.21
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.21												3.51		3.31

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	11													69	
Capacity, c (veh/h)	960													250	
v/c Ratio	0.01													0.27	
95\% Queue Length, Q_{95} (veh)	0.0													1.1	
Control Delay (s/veh)	8.8													24.7	
Level of Service (LOS)	A													C	
Approach Delay (s/veh)		0.3												24.7	
Approach LOS														C	

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$4 / 5 / 2019$
Analysis Year	2019
Time Analyzed	Pm Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Edgehill Rd \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Edgehill Rd
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			620	33		3	592			7		4				
Percent Heavy Vehicles (\%)						1				1		1				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.11				6.41		6.21				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.21				3.51		3.31				

Delay, Queue Length, and Level of Service

Copyright © 2019 University of Florida, All Rights Reserved.

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Pm Existing
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Girad Ave \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Girad Avenue
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			580	4		17	600			2		16				
Percent Heavy Vehicles (\%)						1				1		1				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.11				6.41		6.21				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.21				3.51		3.31				

Delay, Queue Length, and Level of Service

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description
Demand Information
Approach Movement
Demand (v), veh/h

Intersection Information		
Duration, h	0.250	
Area Type	Other	
PHF	0.98	
	Analysis Period	

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase				8		2	1	6
Case Number				9.0		7.3	1.0	4.0
Phase Duration, s				23.0		50.0	17.0	67.0
Change Period, ($Y+R \mathrm{c}$), s				5.0		5.0	5.0	5.0
Max Allow Headway (MAH), s				3.3		0.0	3.1	0.0
Queue Clearance Time ($g s$), s				20.0			7.7	
Green Extension Time ($g e$), s				0.0		0.0	0.2	0.0
Phase Call Probability				1.00			1.00	
Max Out Probability				1.00			0.38	

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement				3		18		2	12	1	6	
Adjusted Flow Rate (v), veh/h				309		338		869	301	281	1005	
Adjusted Saturation Flow Rate (s), veh/h/ln				1743				1795		1795	1885	
Queue Service Time (g s) , s				7.0				14.4		5.7	32.0	
Cycle Queue Clearance Time (g_{c}), s				7.0				14.4		5.7	32.0	
Green Ratio (g/C)				0.20				0.50		0.66	0.69	
Capacity (c), veh/h				697				1795		538	1299	
Volume-to-Capacity Ratio (X)				0.443				0.484		0.522	0.774	
Back of Queue (Q), ft/ln (50 th percentile)				72.6				141.6		47.2	293.9	
Back of Queue (Q), veh/ln (50 th percentile)				2.9				5.6		1.9	11.7	
Queue Storage Ratio ($R Q$) (50 th percentile)				0.00				0.00		0.00	0.00	
Uniform Delay (d_{1}), s/veh				31.6				14.8		9.0	9.3	
Incremental Delay (d_{2}), s/veh				0.2				0.9		0.4	4.5	
Initial Queue Delay (d_{3}), s/veh				0.0				0.0		0.0	0.0	
Control Delay (d), s/veh				31.8		0.0		15.8	0.0	9.4	13.9	
Level of Service (LOS)				C		A		B	A	A	B	
Approach Delay, s/veh / LOS	0.0			15.2		B	11.7		B	12.9		B
Intersection Delay, s/veh / LOS	12.9						B					

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	2.31	B	2.15	B	2.09	B	0.66	A
Bicycle LOS Score / LOS				F	1.45	A	2.61	C

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Am NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Bridge St \& 646
Jurisdiction	
East/West Street	CR 646
North/South Street	Bridge Street
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		2	577				557	13						5		2
Percent Heavy Vehicles (\%)		4												4		4
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.14												6.44		6.24
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.24												3.54		3.34

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 16 / 2019$
Analysis Year	2019
Time Analyzed	Am NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Commerce St \& Rt 646
Jurisdiction	
East/West Street	Route 646
North/South Street	Commerce Street
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		15	564				536	41						21		22
Percent Heavy Vehicles (\%)		4												4		4
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.14												6.44		6.24
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.24												3.54		3.34

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	16													46	
Capacity, c (veh/h)	951													275	
v/c Ratio	0.02													0.17	
95\% Queue Length, Q_{95} (veh)	0.1													0.6	
Control Delay (s/veh)	8.9													20.7	
Level of Service (LOS)	A													C	
Approach Delay (s/veh)		0.5												20.7	
Approach LOS														C	

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$4 / 5 / 2019$
Analysis Year	2019
Time Analyzed	Am NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Edgehill Rd \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Edgehill Rd
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			643	17		5	614			46		7				
Percent Heavy Vehicles (\%)						3				3		3				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				

Delay, Queue Length, and Level of Service

Copyright © 2019 University of Florida, All Rights Reserved.

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Am NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Girad Ave \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Girad Avenue
Peak Hour Factor	0.91
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			574	7		4	554			12		20				
Percent Heavy Vehicles (\%)						4				4		4				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.14				6.44		6.24				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.24				3.54		3.34				

Delay, Queue Length, and Level of Service

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Pm NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Bridge St \& 646
Jurisdiction	
East/West Street	CR 646
North/South Street	Bridge Street
Peak Hour Factor	0.98
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		6	594				587	14						1		1
Percent Heavy Vehicles (\%)		1												1		1
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.11												6.41		6.21
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.21												3.51		3.31

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 16 / 2019$
Analysis Year	2019
Time Analyzed	Pm NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Commerce St \& Rt 646
Jurisdiction	
East/West Street	Route 646
North/South Street	Commerce Street
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		11	633				597	12						37		31
Percent Heavy Vehicles (\%)		1												1		1
Proportion Time Blocked																
Percent Grade (\%)													0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.11												6.41		6.21
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.21												3.51		3.31

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$4 / 5 / 2019$
Analysis Year	2019
Time Analyzed	Pm NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Edgehill Rd \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Edgehill Rd
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			631	34		3	597			7		4				
Percent Heavy Vehicles (\%)						1				1		1				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.11				6.41		6.21				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.21				3.51		3.31				

Delay, Queue Length, and Level of Service

Copyright © 2019 University of Florida, All Rights Reserved.

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Pm NoBuild
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Girad Ave \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Girad Avenue
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			591	4		17	603			2		16				
Percent Heavy Vehicles (\%)						1				1		1				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.11				6.41		6.21				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.21				3.51		3.31				

Delay, Queue Length, and Level of Service

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description
Demand Information
Approach Movement
Demand $(v), v e h / h$

Intersection Information	
Duration, h	0.250
Area Type	Other
PHF	0.98
Analysis Period	$1>7: 00$

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase				8		2	1	6
Case Number				9.0		7.3	1.0	4.0
Phase Duration, s				23.0		50.0	17.0	67.0
Change Period, ($Y+R \mathrm{c}$), s				5.0		5.0	5.0	5.0
Max Allow Headway (MAH), s				3.3		0.0	3.1	0.0
Queue Clearance Time ($g s$), s				20.0			7.9	
Green Extension Time ($g e$), s				0.0		0.0	0.2	0.0
Phase Call Probability				1.00			1.00	
Max Out Probability				1.00			0.44	

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement				3		18		2	12	1	6	
Adjusted Flow Rate (v), veh/h				314		345		870	306	287	1022	
Adjusted Saturation Flow Rate (s), veh/h/ln				1743				1795		1795	1885	
Queue Service Time (g s), s				7.1				14.4		5.9	33.2	
Cycle Queue Clearance Time (g_{c}), s				7.1				14.4		5.9	33.2	
Green Ratio (g/C)				0.20				0.50		0.66	0.69	
Capacity (c), veh/h				697				1795		537	1299	
Volume-to-Capacity Ratio (X)				0.451				0.485		0.534	0.787	
Back of Queue (Q), ft/ln (50 th percentile)				73.9				141.8		48.8	307	
Back of Queue (Q), veh/ln (50 th percentile)				2.9				5.6		1.9	12.2	
Queue Storage Ratio ($R Q$) (50 th percentile)				0.00				0.00		0.00	0.00	
Uniform Delay (d_{1}), s/veh				31.7				14.9		9.1	9.5	
Incremental Delay (d_{2}), s/veh				0.2				0.9		0.5	4.9	
Initial Queue Delay (d_{3}), s/veh				0.0				0.0		0.0	0.0	
Control Delay (d), s/veh				31.8		0.0		15.8	0.0	9.6	14.4	
Level of Service (LOS)				C		A		B	A	A	B	
Approach Delay, s/veh / LOS	0.0			15.2		B	11.7		B	13.3		B
Intersection Delay, s/veh / LOS	13.1						B					

Multimodal Results	EB	WB	NB	SB
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

HCS7 Signalized Intersection Results Summary

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Am Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Bridge St \& 646
Jurisdiction	
East/West Street	CR 646
North/South Street	Bridge Street
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		2	581				551	13						5		2
Percent Heavy Vehicles (\%)		4												4		4
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.14												6.44		6.24
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.24												3.54		3.34

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 16 / 2019$
Analysis Year	2019
Time Analyzed	Am Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Commerce St \& Rt 646
Jurisdiction	
East/West Street	Route 646
North/South Street	Commerce Street
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		15	568				550	41						21		22
Percent Heavy Vehicles (\%)		4												4		4
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.14												6.44		6.24
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.24												3.54		3.34

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$4 / 5 / 2019$
Analysis Year	2019
Time Analyzed	Am Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Edgehill Rd \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Edgehill Rd
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			646	17		5	626			46		7				
Percent Heavy Vehicles (\%)						3				3		3				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.43		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Am Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Girad Ave \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Girad Avenue
Peak Hour Factor	0.91
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			578	7		4	568			12		20				
Percent Heavy Vehicles (\%)						4				4		4				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.14				6.44		6.24				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.24				3.54		3.34				

Delay, Queue Length, and Level of Service

General Information

Intersection Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description
Demand Information
Approach Movement
Demand (v), veh/h

Duration, h	0.250
Area Type	Other
PHF	0.98
Analysis Period	$1>7: 00$

Morris Ave \& 649	File Name	Morris \& 649 Am Build.xus

Am Build

Signal Information

Cycle, s	90.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	No	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase				8		2	1	6
Case Number				9.0		7.3	1.0	4.0
Phase Duration, s				23.0		50.0	17.0	67.0
Change Period, ($Y+R \mathrm{c}$), s				5.0		5.0	5.0	5.0
Max Allow Headway (MAH), s				3.3		0.0	3.1	0.0
Queue Clearance Time ($g s$), s				20.0			9.2	
Green Extension Time ($g e$), s				0.0		0.0	0.2	0.0
Phase Call Probability				1.00			1.00	
Max Out Probability				1.00			1.00	

Multimodal Results	EB	WB	NB	SB
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

HCS7 Signalized Intersection Results Summary

General Information

Intersection Information
Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Duration, h	0.250
Area Type	Other
PHF	0.94
Analysis Period	$1>7: 00$

Passaic Ave \& 649	File Name	Passaic \& 649 Am Build.xus

Am Build

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h					905	95	403	620		55		496			
Signal Information															
Cycle, s	90.0	Reference Phase	2				5					,			
Offset, s	0	Reference Point	End	Green	15.0	37.0	20.0	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5			\square

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase		2	1	6		8		
Case Number		8.3	1.0	4.0		9.0		
Phase Duration, s		43.0	21.0	64.0		26.0		
Change Period, ($Y+R$) , s		6.0	6.0	6.0		6.0		
Max Allow Headway (MAH), s		0.0	3.1	0.0		3.3		
Queue Clearance Time ($g s$), s			15.0			22.0		
Green Extension Time (g e), s		0.0	0.0	0.0		0.0		
Phase Call Probability			1.00			1.00		
Max Out Probability			1.00			1.00		

Movement Group Results	EB			WB			NB			SB			
Approach Movement	L	T	R	L	T	R	L	T	R	L	L	T	R
Assigned Movement		2	12	1	6		3		18				
Adjusted Flow Rate (v), veh/h		541	523	429	660		59		528				
Adjusted Saturation Flow Rate (s), veh/h/ln		1841	1779	1753	1841		1753		1560				
Queue Service Time (g s), s		22.0	22.1	13.0	17.9		2.4		20.0				
Cycle Queue Clearance Time (g_{c}), s		22.0	22.1	13.0	17.9		2.4		20.0				
Green Ratio (g/C)		0.41	0.41	0.60	0.64		0.22		0.39				
Capacity (c), veh/h		757	731	459	1186		390		607				
Volume-to-Capacity Ratio (X)		0.715	0.715	0.934	0.556		0.150		0.870				
Back of Queue (Q), ft/ln (50 th percentile)		260.1	245	185.7	169.2		25.7		304				
Back of Queue (Q), veh/ln (50 th percentile)		10.1	9.8	7.2	6.6		1.0		11.8				
Queue Storage Ratio ($R Q$) (50 th percentile)		0.00	0.00	0.00	0.00		0.00		0.00				
Uniform Delay (d_{1}), s/veh		22.1	22.1	18.6	8.9		28.2		25.4				
Incremental Delay (d_{2}), s/veh		5.7	5.9	26.1	1.9		0.1		12.4				
Initial Queue Delay (d_{3}), s/veh		0.0	0.0	0.0	0.0		0.0		0.0				
Control Delay (d), s/veh		27.8	28.0	44.7	10.7		28.2		37.8				
Level of Service (LOS)		C	C	D	B		C		D				
Approach Delay, s/veh / LOS	27.9		C	24.1		C	36.9		D		0.0		
Intersection Delay, s/veh / LOS	28.3						C						

Multimodal Results	EB	WB	NB	SB
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h					536	53	176	482		105		429			
Signal Information															
Cycle, s	90.0	Reference Phase	2			\vec{d}	5								
Offset, s	0	Reference Point	End	Green	8.0	42.0	26.0	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.0	4.0	3.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	2.0	2.0	0.0	0.0	0.0		5	6	7	

Timer Results

Assigned Phase

Case Number
Phase Duration, s
Change Period, $(Y+R c)$, s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time ($g e$), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement

Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/In (95 th percentile)
Back of Queue (Q), veh/ln (95 th percentile)
Queue Storage Ratio ($R Q$) (95 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS

Multimodal Results	EB		WB	
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Pm Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Bridge St \& 646
Jurisdiction	
East/West Street	CR 646
North/South Street	Bridge Street
Peak Hour Factor	0.98
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		6	608				595	14						1		1
Percent Heavy Vehicles (\%)		1												1		1
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.11												6.41		6.21
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.21												3.51		3.31

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 16 / 2019$
Analysis Year	2019
Time Analyzed	Pm Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Commerce St \& Rt 646
Jurisdiction	
East/West Street	Route 646
North/South Street	Commerce Street
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		11	647				605	12						37		31
Percent Heavy Vehicles (\%)		1												1		1
Proportion Time Blocked																
Percent Grade (\%)													0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.11												6.41		6.21
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.21												3.51		3.31

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$4 / 5 / 2019$
Analysis Year	2019
Time Analyzed	Pm Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Edgehill Rd \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Edgehill Rd
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			643	34		3	604			7		4				
Percent Heavy Vehicles (\%)						1				1		1				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.11				6.41		6.21				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.21				3.51		3.31				

Delay, Queue Length, and Level of Service

Copyright © 2019 University of Florida, All Rights Reserved.

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 15 / 2019$
Analysis Year	2019
Time Analyzed	Pm Build
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Girad Ave \& CR 646
Jurisdiction	
East/West Street	County Route 646
North/South Street	Girad Avenue
Peak Hour Factor	0.96
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			605	4		17	611			2		16				
Percent Heavy Vehicles (\%)						1				1		1				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.11				6.41		6.21				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.21				3.51		3.31				

Delay, Queue Length, and Level of Service

General Information

Intersection Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description
Demand Information
Approach Movement
Demand (v), veh/h

Duration, h	0.250
Area Type	Other
PHF	0.98
Analysis Period	$1>7: 00$

Morris Ave \& 649	File Name	Morris \& 649 Pm Build.xus

Pm Build

Signal Information

Cycle, s	90.0	Reference Phase	2
Offset, s	0	Reference Point	End
Uncoordinated	No	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase				8		2	1	6
Case Number				9.0		7.3	1.0	4.0
Phase Duration, s				23.0		50.0	17.0	67.0
Change Period, ($Y+R \mathrm{c}$), s				5.0		5.0	5.0	5.0
Max Allow Headway (MAH), s				3.3		0.0	3.1	0.0
Queue Clearance Time ($g s$), s				20.0			7.9	
Green Extension Time ($g e$), s				0.0		0.0	0.2	0.0
Phase Call Probability				1.00			1.00	
Max Out Probability				1.00			0.44	

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement				3		18		2	12	1	6	
Adjusted Flow Rate (v), veh/h				331		345		895	312	287	1062	
Adjusted Saturation Flow Rate (s), veh/h/ln				1743				1795		1795	1885	
Queue Service Time (g s), s				7.5				14.9		5.9	36.1	
Cycle Queue Clearance Time (g_{c}), s				7.5				14.9		5.9	36.1	
Green Ratio (g / C)				0.20				0.50		0.66	0.69	
Capacity (c), veh/h				697				1795		529	1299	
Volume-to-Capacity Ratio (X)				0.474				0.499		0.542	0.818	
Back of Queue (Q), ft/ln (50 th percentile)				78.1				147.2		49.1	338.4	
Back of Queue (Q), veh/ln (50 th percentile)				3.1				5.8		1.9	13.4	
Queue Storage Ratio ($R Q$) (50 th percentile)				0.00				0.00		0.00	0.00	
Uniform Delay (d_{1}), s/veh				31.8				15.0		9.3	10.0	
Incremental Delay (d_{2}), s/veh				0.2				1.0		0.6	5.8	
Initial Queue Delay ($d_{\text {s }}$), s/veh				0.0				0.0		0.0	0.0	
Control Delay (d), s/veh				32.0		0.0		16.0	0.0	9.9	15.8	
Level of Service (LOS)				C		A		B	A	A	B	
Approach Delay, s/veh / LOS	0.0			15.7		B	11.8		B	14.5		B
Intersection Delay, s/veh / LOS				. 8						B		

Multimodal Results	EB	WB	NB	SB
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

General Information

Agency	
Analyst	
Jurisdiction	
Urban Street	
Intersection	P
Project Description	P

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h					743	97	537	832		62		448			
Signal Information															
Cycle, s	90.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	15.0	42.0	15.0	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0					Γ

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h					593	81	332	552		64		239			
Signal Information															
Cycle, s	90.0	Reference Phase	2			\Rightarrow	5							3	
Offset, s	0	Reference Point	End	Green	13.0	37.0	26.0	0.0	0.0	0.0				3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.0	4.0	3.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	2.0	2.0	0.0	0.0	0.0		5	6	7	

Timer Results

Assigned Phase

Case Number
Phase Duration, s
Change Period, $(Y+R c)$, s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time ($g e$), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement

Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/In (95 th percentile)
Back of Queue (Q), veh/ln (95 th percentile)
Queue Storage Ratio ($R Q$) (95 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS
Intersection Delay, s/veh/LOS

Multimodal Results	EB		WB	
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description

Intersection Information

Demand Information				EB			WB			NB			SB		
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h					593	81	332	552		64		239			
Signal Information															
Cycle, s	100.0	Reference Phase	2												
Offset, s	0	Reference Point	End	Green	14.0	46.0	26.0	0.0	0.0	0.0				3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.0	4.0	3.0	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	2.0	2.0	0.0	0.0	0.0		5	6	7	

Timer Results

Assigned Phase

Case Number
Phase Duration, s
Change Period, ($Y+R c$), s
Max Allow Headway (MAH), s
Queue Clearance Time ($g s$), s
Green Extension Time ($g e$), s
Phase Call Probability
Max Out Probability

Movement Group Results

Approach Movement
Assigned Movement

Adjusted Flow Rate (v), veh/h
Adjusted Saturation Flow Rate (s), veh/h/ln
Queue Service Time ($g s$), s
Cycle Queue Clearance Time ($g c$), s
Green Ratio (g / C)
Capacity (c), veh/h
Volume-to-Capacity Ratio (X)
Back of Queue (Q), ft/ln (95 th percentile)
Back of Queue (Q), veh/ln (95 th percentile)
Queue Storage Ratio ($R Q$) (95 th percentile)
Uniform Delay (d_{1}), s/veh
Incremental Delay (d_{2}), s/veh
Initial Queue Delay (d_{3}), s/veh
Control Delay (d), s/veh
Level of Service (LOS)
Approach Delay, s/veh / LOS
Intersection Delay, s/veh / LOS
Intersection Delay, s/veh/LOS

Multimodal Results	EB		WB	
Pedestrian LOS Score / LOS				
Bicycle LOS Score / LOS				

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 17 / 2019$
Analysis Year	2019
Time Analyzed	Am Build
Intersection Orientation	North-South
Project Description	

Site Information

Intersection	Site Driveway \& River Rd
Jurisdiction	
East/West Street	Site Driveway
North/South Street	River Road
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		72		20						5	550				207	22
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	EIC
Agency/Co.	DD
Date Performed	$5 / 17 / 2019$
Analysis Year	2019
Time Analyzed	Pm Build
Intersection Orientation	North-South
Project Description	

Site Information

Intersection	Site Driveway \& River Rd
Jurisdiction	
East/West Street	Site Driveway
North/South Street	River Road
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		42		12						19	261				341	72
Percent Heavy Vehicles (\%)		1		1						1						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.41		6.21						4.11						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.51		3.31						2.21						

Delay, Queue Length, and Level of Service

Bridge St \& Watchung Ave

Peak Hour Turning Movement Count

ID: 19-12042-004
City: Chatham

SOUTHBOUND

AM	2	0	5	0
NOON	0	0	0	0
PM	1	0	1	0
		\downarrow	\square	L
		1	0	0

15	AM
0	NOON
20	PM
P	

Day: Wednesday
Date: 03/27/2019

Cars (NOON)

HT (PM)

Commerce St \& Watchung Ave

Peak Hour Turning Movement Count

Edgehill Rd \& Watchung Ave

Peak Hour Turning Movement Count

Fairmount Ave \& Watchung Ave
Peak Hour Turning Movement Count

Girard Ave \& Watchung Ave

Peak Hour Turning Movement Count

Hillside Ave \& Watchung Ave

Peak Hour Turning Movement Count

ID: 19-12042-003
City: Chatham

Day: Wednesday
Date: 03/27/2019

07:00 AM - 09:00 AM NONE 04:00 PM - 06:30 PM				
PM	NOON	AM		
51	0	45		
523	0	498		
11	0	10 ¢		
0	0	0		
591	0	577		
PM	NOON	AM		

HT (NOON)

$N / A \rightarrow N / A$

HT (PM)

Passaic Ave \& River Rd

Peak Hour Turning Movement Count

ID: 19-12042-008
City: Chatham

Day: Wednesday
Date: 03/27/2019

Cars (NOON)

HT (PM)

River Rd \& Morris Ave

Peak Hour Turning Movement Count

River Rd \& Watchung Ave

Peak Hour Turning Movement Count

[^0]: River Road Redevelopment Play
 Borough of Chatham, Morris County
 November 6, 2019

